2024

  • Lehna, Malte, Clara Holzhüter, Sven Tomforde, and Christoph Scholz. HUGO – Highlighting Unseen Grid Options: Combining Deep Reinforcement Learning With a Heuristic Target Topology Approach. Sustainable Energy, Grids and Networks 39 (September 2024): 101510. doi:10.1016/j.segan.2024.101510.
    URLBibTeXEndNoteDOI
  • Lehna, Malte, Mohamed Hassouna, Dmitry Degtyar, Sven Tomforde, and Christoph Scholz. Fault Detection for Agents in Power Grid Topology Optimization: A Comprehensive Analysis. In Machine Learning for Sustainable Power Systems (ML4SPS), ECML. Springer, 2024.
    AbstractBibTeXEndNote
  • Hassouna, Mohamed, Clara Holzhüter, Pawel Lytaev, Josephine M. Thomas, Bernhard Sick, and Christoph Scholz. Graph Reinforcement Learning in Power Grids: A Survey.. CoRR abs/2407.04522 (2024). http://dblp.uni-trier.de/db/journals/corr/corr2407.html#abs-2407-04522.
    URLBibTeXEndNote
  • Lehna, Malte, Clara Holzhüter, Sven Tomforde, and Christoph Scholz. HUGO -- Highlighting Unseen Grid Options: Combining Deep Reinforcement Learning With a Heuristic Target Topology Approach. doi:https://doi.org/10.1016/j.segan.2024.101510.
    URLBibTeXEndNoteDOI

2023

  • Lehna, Malte, Jan Viebahn, Antoine Marot, Sven Tomforde, and Christoph Scholz. Managing Power Grids through Topology Actions: A Comparative Study Between Advanced Rule-Based and Reinforcement Learning Agents. Energy and AI 14 (2023): 100276. doi:10.1016/j.egyai.2023.100276.
    AbstractURLBibTeXEndNoteDOI
  • Heinrich, René, Christoph Scholz, Stephan Vogt, and Malte Lehna. Targeted Adversarial Attacks on Wind Power Forecasts. Machine Learning 113, no. 2 (2023): 863–889. doi:10.1007/s10994-023-06396-9.
    AbstractBibTeXEndNoteDOI
Nach oben scrollen