[2025] [2024] [2023]

2025

  • Holzhüter, Clara, Pawel Lytaev, Marcel Dipp, Mohamed Hassouna, Kurt Brendlinger, Jan Viebahn, Wiktor Gegelman, and Christian Merz. Graph Neural Networks for Grid Control: Prospects in AI-Assisted Transmission Grid Operation. In ETG Kongress 2025.
    BibTeXEndNote
  • Hassouna, Mohamed, Clara Holzhüter, Malte Lehna, Matthijs de Jong, Jan Viebahn, Bernhard Sick, and Christoph Scholz. Learning Topology Actions for Power Grid Control: A Graph-Based Soft-Label Imitation Learning Approach. https://arxiv.org/abs/2503.15190.
    URLBibTeXEndNote
  • Leyli abadi, Milad, Ricardo J. Bessa, Jan Viebahn, Daniel Boos, Clark Borst, Alberto Castagna, Ricardo Chavarriaga, et al. A Conceptual Framework for AI-Based Decision Systems in Critical Infrastructures. https://arxiv.org/abs/2504.16133.
    URLBibTeXEndNote

2024

  • Lehna, Malte, Clara Holzhüter, Sven Tomforde, and Christoph Scholz. HUGO – Highlighting Unseen Grid Options: Combining Deep Reinforcement Learning With a Heuristic Target Topology Approach. Sustainable Energy, Grids and Networks 39 (September 2024): 101510. doi:10.1016/j.segan.2024.101510.
    URLBibTeXEndNoteDOI
  • Mussi, Marco, Gianvito Losapio, Alberto Maria Metelli, Marcello Restelli, Ricardo Bessa, Antoine Marot, Daniel Boos, et al. Position Paper on AI for the Operation of Critical Energy and Mobility Network Infrastructures. Porto: AI4REALNET, 2024. doi:https://irf.fhnw.ch/handle/11654/49377.
    URLBibTeXEndNoteDOI
  • Lehna, Malte, Mohamed Hassouna, Dmitry Degtyar, Sven Tomforde, and Christoph Scholz. Fault Detection for Agents in Power Grid Topology Optimization: A Comprehensive Analysis. In Machine Learning for Sustainable Power Systems (ML4SPS), ECML. Springer, 2024.
    AbstractBibTeXEndNote
  • Hassouna, Mohamed, Clara Holzhüter, Pawel Lytaev, Josephine Thomas, Bernhard Sick, and Christoph Scholz. Graph Reinforcement Learning for Power Grids: A Comprehensive Survey. https://arxiv.org/abs/2407.04522.
    URLBibTeXEndNote
  • Lehna, Malte, Clara Holzhüter, Sven Tomforde, and Christoph Scholz. HUGO -- Highlighting Unseen Grid Options: Combining Deep Reinforcement Learning With a Heuristic Target Topology Approach. doi:https://doi.org/10.1016/j.segan.2024.101510.
    URLBibTeXEndNoteDOI
  • Braun, Martin, Christian Gruhl, Christian A. Hans, Philipp Härtel, Christoph Scholz, Bernhard Sick, Malte Siefert, Florian Steinke, Olaf Stursberg, and Sebastian Wende von Berg. Predictions and Decision Making for Resilient Intelligent Sustainable Energy Systems. https://arxiv.org/abs/2407.03021.
    URLBibTeXEndNote

2023

  • Lehna, Malte, Jan Viebahn, Antoine Marot, Sven Tomforde, and Christoph Scholz. Managing Power Grids through Topology Actions: A Comparative Study Between Advanced Rule-Based and Reinforcement Learning Agents. Energy and AI 14 (2023): 100276. doi:10.1016/j.egyai.2023.100276.
    AbstractURLBibTeXEndNoteDOI
  • Heinrich, René, Christoph Scholz, Stephan Vogt, and Malte Lehna. Targeted Adversarial Attacks on Wind Power Forecasts. Machine Learning 113, no. 2 (2023): 863–889. doi:10.1007/s10994-023-06396-9.
    AbstractBibTeXEndNoteDOI
Nach oben scrollen